The Hausdorff dimension of recurrent sets in symbolic spaces
نویسندگان
چکیده
منابع مشابه
The Hausdorff dimension of recurrent sets in symbolic spaces
Let ( , σ ) be the one-sided shift space onm symbols. For any x = (xi)i 1 ∈ and positive integer n, define Rn(x) = inf{j n : x1x2 · · · xn = xj+1xj+2 · · · xj+n}. We prove that for each pair of numbersα, β ∈ [0,∞] withα β, the following recurrent set Eα,β = { x ∈ : lim inf n→∞ logRn(x) n = α, lim sup n→∞ logRn(x) n = β } has Hausdorff dimension one. AMS classification scheme number: 28A80
متن کاملFractal sets and Hausdorff dimension
We consider Farey series of rational numbers in terms of fractal sets labeled by the Hausdorff dimension with values defined in the interval 1 < h < 2 and associated with fractal curves. Our results come from the observation that the fractional quantum Hall effect-FQHE occurs in pairs of dual topological quantum numbers, the filling factors. These quantum numbers obey some properties of the Far...
متن کاملHausdorff Dimension in Convex Bornological Spaces
For non-metrizable spaces the classical Hausdorff dimension is meaningless. We extend the notion of Hausdorff dimension to arbitrary locally convex linear topological spaces, and thus to a large class of non-metrizable spaces. This involves a limiting procedure using the canonical bornological structure. In the case of normed spaces the new notion of Hausdorff dimension is equivalent to the cla...
متن کاملA Hausdorff dimension for finite sets
The classical Hausdorff dimension, denoted dimH , of finite or countable sets is zero. We define an analog for finite sets, called finite Hausdorff dimension and denoted dimfH , which is non-trivial. It turns out that a finite bound for dimfH (F ) guarantees that every point of F has ”nearby” neighbors. This property is important for many computer algorithms of great practical value, that obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2000
ISSN: 0951-7715,1361-6544
DOI: 10.1088/0951-7715/14/1/304